Multi-Point Loewner
Numerics.mploewner.build_exact_data
build_exact_data(H, theta, sigma, /, L=randn(size(H(randn(1)),1),length(theta)), R=randn(size(H(randn(1)),1),length(sigma)), PadStrategy="cyclical", Verbose=true)
construct left/right interpolation data BB/CC from exact transfer function evaluations at theta/sigma
Numerics.mploewner.mploewner_exact_siso
Multi-Point Loewner realization with exact transfer function samples.
Parameters:
-
H
–transfer function
-
theta
–left interpolation points
-
sigma
–right interpolation points
-
m
–number of poles to search for in \( \Omega \)
Name-Value Arguments:
-
PadStrategy
–padding strategy for construction of BB/CC (if the number of left/right tangential directions is less than the number of corresponding interpolation points)
-
Verbose
–verbose output (or not)
-
AbsTol
–absolute tolerance for base data matrix rank determination
Numerics.mploewner.mploewner_exact
Multi-Point Loewner realization with exact transfer function samples.
Parameters:
-
H
–transfer function
-
theta
–left interpolation points
-
sigma
–right interpolation points
-
L
–\( n \times \ell \) matrix of left probing directions
-
R
–\( n \times r \) matrix of right probing directions
-
m
–number of poles to search for in \( \Omega \)
Name-Value Arguments:
-
PadStrategy
–padding strategy for construction of BB/CC (if the number of left/right tangential directions is less than the number of corresponding interpolation points)
-
Verbose
–verbose output (or not)
-
AbsTol
–absolute tolerance for base data matrix rank determination
Numerics.mploewner.mploewner_quadrature
mploewner_quadrature(z, w, Ql, Qr, L, R, theta, sigma, m, /, *, PadStrategy=NaN, Verbose=true, AbsTol=NaN)
Multi-Point Loewner realization with one-sided quadrature samples.
Given left/right quadrature data Ql
/Qr
, compute probed left/right transfer function samples at left/right interpolation points (theta/sigma) via contour integration approximated by a quadrature rule with nodes and weights \( ( z_k, w_k ) \).
Parameters:
-
z
–vector of quadrature nodes
-
w
–vector of quadrature weights
-
Ql
–vector of left-sided samples \( L^* T^{-1} \) at \( z_k \) in \(z\)
-
Qr
–vector of right-sided samples of \( T^{-1} R \) at \( z_k \) in \(z\)
-
L
–\( n \times \ell \) matrix of left probing directions
-
R
–\( n \times r \) matrix of right probing directions
-
theta
–left interpolation points
-
sigma
–right interpolation points
-
m
–number of poles to search for in \( \Omega \)
Name-Value Arguments:
-
PadStrategy
–padding strategy for construction of BB/CC (if the number of left/right tangential directions is less than the number of corresponding interpolation points)
-
Verbose
–verbose output (or not)
-
AbsTol
–absolute tolerance for base data matrix rank determination
Numerics.mploewner.build_exact_data_siso
construct left/right interpolation data BB/CC from exact transfer function evaluations at theta/sigma
Numerics.mploewner.build_loewner
construct base and shifted Loewner matrices from left and right interpolation data