Skip to content

ERA/Single-Point Loewner

Numerics.sploewner.sploewner_quadrature

sploewner_quadrature(sigma, z, w, Ql, Qr, Qlr, K, m, /, options=struct("AbsTol",NaN))

Hankel/Single Point Loewner realization with two-sided quadrature samples. Given two-sided/left/right quadrature data Qlr/Ql/Qr, construction moments via contour integration approximated by a quadrature rule with nodes and weights \( ( z_k, w_k ) \).

Parameters:

  • sigma

    shift value \( = \infty \Leftrightarrow \) Hankel, \( ! \infty \Leftrightarrow \) SPLoewner

  • z

    vector of quadrature nodes

  • w

    vector of quadrature weights

  • Ql

    vector of left-sided samples \( L^* T^{-1} \) at \( z_k \) in \(z\)

  • Qr

    vector of right-sided samples of \( T^{-1} R \) at \( z_k \) in \(z\)

  • Qlr

    vector of two-sided samples \( L^* T^{-1} R \) at \( z_k \) in \(z\)

  • K

    number of moments to use in data matrix construction

  • m

    number of poles to search for in \( \Omega \)

  • options

    options for realization

Numerics.sploewner.build_exact_moments

build_exact_moments(sigma, A, B, C, K, /, L=eye(size(C,1),size(C,1)), R=eye(size(B,2),size(B,2)))

Helper function to build generalized moments up to order K from left/right/two-sided quadrature samples at nodes \( z \) using quadrature weights \( w \).

Numerics.sploewner.build_sploewner

build_sploewner(sigma, Ml, Mr, Mlr, K)

Helper function to build the data matrices for SPLoewner realization.

Numerics.sploewner.build_quadrature_moments

build_quadrature_moments(sigma, z, w, Ql, Qr, Qlr, K)

Helper function to build generalized moments up to order K from left/right/two-sided quadrature samples at nodes \( z \) using quadrature weights \( w \).

Numerics.sploewner.sploewner_exact

sploewner_exact(sigma, A, B, C, K, m, /, L=eye(size(C,1),size(C,2)), R=eye(size(B,2),size(B,1)), options=struct("AbsTol",NaN))

Hankel/Single Point Loewner realization given state, reachability, and observability matrices of an LTI system. Using these system matrices, (probed) generalzied moments are constructed up to order \( 2K \). We use these "exact" moments to construct the Hankel data matrices and the realize the system from the resulting matrix pencil.

Parameters:

  • sigma

    shift value \( = \infty \Leftrightarrow \) Hankel, \( ! \infty \Leftrightarrow \) SPLoewner

  • A

    state matrix

  • B

    reachability matrix

  • C

    observability matrix

  • K

    half of the number of moments to use in data matrix construction

  • m

    number of poles to search for in \( \Omega \)

  • L

    left matrix of probing directions

  • R

    right matrix of probing directions

  • options

    options for realization